Discuz! Board

 找回密碼
 立即註冊
搜索
熱搜: 活動 交友 discuz
查看: 1|回復: 0

Data Cleaning and Preparation

[複製鏈接]

1

主題

1

帖子

5

積分

新手上路

Rank: 1

積分
5
發表於 11:47:05 | 顯示全部樓層 |閱讀模式
Statistical Concepts
  • Probability distributions: Normal, binomial, Poisson, etc.
  • Hypothesis testing: T-test, ANOVA, Chi-square test
  • Correlation and regression: Simple and multiple regression
  • Time series analysis: Forecasting methods (ARIMA, exponential smoothing)
Data Cleaning and Preparation
  • Missing data handling: Imputation techniques
  • Outlier detection and handling: Methods to identify and treat outliers
  • Data normalization and standardization: Techniques to scale data
  • Data transformation: Log transformations, etc.
Data Visualization
  • Choosing appropriate visualizations: Bar charts, line charts, scatter plots, histograms, etc.
  • Data storytelling: Effectively Telegram Number communicating insights through visualizations
  • Using tools like: Tableau, Power BI, Excel, Python (Matplotlib, Seaborn)
SQL
  • Basic queries: SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY
  • Joins: Inner, left, right, outer joins
  • Subqueries and correlated subqueries
  • Aggregation functions: COUNT, SUM, AVG, MIN, MAX
Python for Data Analysis
  • Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn
  • Data manipulation and analysis
  • Machine learning concepts: Classification, regression, clustering
Business Understanding
  • Interpreting data in a business context
  • Identifying key metrics and KPIs
  • Communicating findings to stakeholders
Example Questions:
  • How would you handle a dataset with a large number of missing values?
  • Explain the difference between correlation and causation.
  • What is the purpose of data normalization?
  • Write a SQL query to find the top 5 customers by total sales.
  • Describe the steps involved in building a regression model.
  • What is the bias-variance trade-off in machine learning?
  • How would you visualize the distribution of a categorical variable?



Practice resources:
  • Online courses: Coursera, edX, Udemy
  • Books: "Python for Data Analysis" by Wes McKinney, "Data Analysis with Python" by Jake VanderPlas
  • Practice problems: HackerRank, LeetCode, Kaggle
Remember: The key to success in a data analyst exam is a strong understanding of the underlying concepts and the ability to apply them to real-world problems.

回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 立即註冊

本版積分規則

Archiver|手機版|自動贊助|z

GMT+8, 09:40 , Processed in 0.031268 second(s), 18 queries .

抗攻擊 by GameHost X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回復 返回頂部 返回列表
一粒米 | 中興米 | 論壇美工 | 設計 抗ddos | 天堂私服 | ddos | ddos | 防ddos | 防禦ddos | 防ddos主機 | 天堂美工 | 設計 防ddos主機 | 抗ddos主機 | 抗ddos | 抗ddos主機 | 抗攻擊論壇 | 天堂自動贊助 | 免費論壇 | 天堂私服 | 天堂123 | 台南清潔 | 天堂 | 天堂私服 | 免費論壇申請 | 抗ddos | 虛擬主機 | 實體主機 | vps | 網域註冊 | 抗攻擊遊戲主機 | ddos |